
International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 201

Improved YOLO Architecture for Real-Time Jellyfish
Detection

BACHELOROFTECHNOLOGY

in

COMPUTERSCIENCE&

ENGINEERING (DATA SCIENCE)

Submitted by

JAISWAL KASHISH 21WJ1A6718

PADIGELA AKSHAYA 21WJ1A6744

SHAIK SHOYAB 21WJ1A6754

Under the Guidance of

Dr.Ch. Subbalakshmi

HOD - CSE(DATA SCIENCE)

Department of CSE(DATA SCIENCE)

School of Engineering and Technology

Guru Nanak Institutions Technical Campus

Ibrahimpatnam, Hyderabad, R.R. District – 501506

June, 2025

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 202

The objective of this project is to develop an efficient and accurate system for detecting jellyfish

in underwater environments using deep learning techniques. Massive jellyfish outbreaks pose

serious risks to human safety and marine ecosystems, highlighting the urgent need for reliable

detection methods. To address this, the project leverages optical imagery and a convolutional

neural network (CNN)-based object detection approach.

Due to the scarcity of labeled jellyfish datasets, a novel dataset was created using a model-

assisted labeling strategy, significantly minimizing the need for manual annotation. Based on

this dataset, we propose an enhanced YOLOv11 model that incorporates the Global Attention

Mechanism (GAM) and CoordConv modules to improve feature extraction and spatial awareness.

Experimental evaluations demonstrate that the proposed model outperforms several state-of-the-

art detection frameworks in terms of accuracy and robustness. The results indicate the system's

potential for real-time jellyfish detection, contributing to improved marine safety and ecosystem

monitoring.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 203

LIST OF FIGURES

FIGURE NO NAME OF THE FIGURE PAGE NO.

5.2.1 Use case Diagram 19

5.2.2 Class diagram 20

5.2.3 Object diagram 21

5.2.4 State Diagram 22

5.2.5 Activity Diagram 23

5.2.6 Sequence diagram 24

5.2.7 Collaboration diagram 25

5.2.8 Component Diagram 26

5.2.9 Data flow diagram 27

5.2.10 Deployment Diagram 29

5.2.11 Architecture Diagram 30

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 204

LIST OF SYMBOLS

S.NO

NOTATION

NAME NOTATION DESCRIPTION

1. Class Represents a collection of

similar entities grouped

together.
+ public

-private

Class Name

-attribute

-attribute

2. Association

Associations represents

static relationships

between classes. Roles

represents the way the two

classes see each other.

3. Actor

It aggregates several

classes into a single class.

4. Aggregation

Class A Class A

Class B Class B

Interaction between the

system and external

environment

Class A NAME Class B

Class A Class B

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 205

5.
Relation

(uses)

uses
Used for additional process

communication.

6. Relation

(extends)
extends

Extends relationship is used

when one use case is similar

to another use case but does

a bit more.

7. Communication Communication between

various use cases.

8. State State State of the processes.

9. Initial State Initial state of the object

10. Final state Final state of the object

11. Control flow Represents various control

flow between the states.

12. Decision box Represents decision making

process from a constraint

13. Use case

Uses case

Interaction between the
System and external

Environment.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal, ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 06 |June-2025 206

14. Component

Represents physical

Modules which are a

collection of components.

15. Node

Represents physical

Modules which are a

collection of components.

16. Data

Process/State

A circle in DFD represents a

state or process which has

been triggered due to some

event or action.

17. External entity

Represents external entities

such as keyboard, sensors,

etc.

18. Transition Represents communication

that occurs between

processes.

19. Object Lifeline Represents the vertical

dimensions that the object

communications.

20. Message Message Represents themessage

exchanged.

https://www.irjweb.com/

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 207

1.1 INTRODUCTION

CHAPTER-1

INTRODUCTION

Jellyfish outbreaks have emerged as a significant concern globally, affecting marine ecosystems

and endangering human lives. These outbreaks disrupt ecological balance, impact fisheries, and

pose challenges to coastal industries, including tourism and power generation. As a result,

accurate and efficient jellyfish detection has become a crucial area of research. Current detection

methods are broadly categorized into optical imaging and sonar imaging approaches, each with

its own advantages and limitations. Optical imagery, in particular, offers a detailed and intuitive

visual representation, making it highly suitable for real-time jellyfish detection. However, the

application of optical methods in conjunction with advanced deep-learning techniques remains

underexplored.

Manual annotation of datasets is a labour-intensive and time-consuming process, particularly for

large datasets. To overcome this challenge, we adopted a model-assisted labelling method, which

significantly reduces the burden of manual labelling while ensuring high-quality annotations.

Using this dataset, we developed and enhanced a YOLOv11-based detection model. The

proposed improvements involve integrating advanced architectural components, such as the

Global Attention Mechanism (GAM) and CoordConv layers, to optimize the detection

capabilities of the YOLOv11- model.

The enhanced YOLOv11 model is designed to balance real-time performance with robust

detection accuracy, addressing the trade-offs often observed in conventional object detection

models. Extensive experiments were conducted to evaluate its performance against several state-

of-the-art object detection frameworks, including Faster R-CNN and YOLOv11. The results

highlight the effectiveness of our proposed approach in accurately detecting jellyfish in complex

underwater environments, offering a promising solution for mitigating the impact of jellyfish

outbreaks.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 208

1.2 SCOPE OF THE PROJECT

The scope of this project revolves around utilizing YOLOv11, a cutting-edge object detection

framework, to develop an advanced jellyfish detection system using optical imagery. This project

aims to address the critical challenges posed by jellyfish outbreaks, which significantly impact

marine ecosystems, fisheries, and human activities. The focus includes creating a diverse and

annotated dataset of underwater jellyfish images to train and evaluate the model. YOLOv11’s

state-of-the-art capabilities, such as Transformer-based backbones and advanced feature fusion

mechanisms, will be fine-tuned for underwater environments to ensure robust performance in

complex scenarios involving low visibility, overlapping objects, and diverse jellyfish

morphologies. The system is designed to achieve real-time detection with a balance between

computational efficiency and accuracy, making it suitable for deployment on platforms such as

edge devices, unmanned underwater vehicles, and cloud-based systems. Additionally, the

model’s performance will be benchmarked against other object detection frameworks to

demonstrate its effectiveness. This scalable and deployable system aims to support ecosystem

management, providing valuable insights into jellyfish populations and assisting industries in

mitigating the adverse effects of outbreaks, ultimately contributing to advancements in marine

conservation and monitoring.

In sectors like autonomous vehicles, healthcare imaging, and robotics, YOLOv11 provides

unparalleled efficiency in detecting intricate details and handling challenging environments. It

can be integrated into retail for inventory tracking, surveillance systems for real-time threat

detection, and industrial automation for quality control. With a reduction in latency and

enhanced real-time performance, YOLOv11 offers a flexible and robust foundation for

addressing specific challenges across diverse domains, ensuring adaptability to future

advancements in computer vision technologies

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 209

1.3 OBJECTIVE

The primary objective of this project is to design and implement a cutting-edge jellyfish

detection system using YOLOv11, a state-of-the-art deep learning model for real-time object

detection. The goal is to address critical challenges posed by massive jellyfish outbreaks, which

impact marine ecosystems, disrupt fisheries, and pose risks to human activities. By leveraging

YOLOv11’s advanced features—such as improved feature extraction, enhanced detail

recognition, and faster processing speeds—this project aims to create a detection system that

excels in accuracy and efficiency under challenging underwater conditions.

The project emphasizes creating a comprehensive dataset of underwater jellyfish images that

reflect diverse species, environments, and morphological traits. These images will serve as a

foundation for training YOLOv11, ensuring the model is robust against issues like low visibility,

overlapping objects, and complex underwater backgrounds. The integration of YOLOv11’s

innovative architecture, including its ability to handle multiple vision tasks such as object

detection and instance segmentation, will significantly enhance the system’s ability to detect

jellyfish with precision and speed.

Another objective is to develop a solution that is not only highly accurate but also scalable and

deployable across various platforms, such as underwater vehicles, edge devices, and cloud-based

systems. This will facilitate real-time monitoring and analysis, enabling proactive measures to

mitigate the adverse effects of jellyfish outbreaks on marine and coastal industries. Furthermore,

the system is designed to be versatile, with the potential to extend its capabilities to other

underwater object detection tasks, contributing to broader advancements in environmental

monitoring and industrial applications.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 210

CHAPTER 2

LITERATURE SURVEY

2.1 REVIEWOFRELATED RESEARCH PAPERS

[1] TITLE: Visual Instruction Tuning

AUTHORS:H. Liu, C. Li, Q. Wu, and Y. J. Lee

YEAR: 2023

DESCRIPTION: This paper introduces a novel approach called Visual Instruction Tuning

(VIT), which aims to enhance the capabilities of visual models in understanding and executing

complex visual instructions. Traditional visual models are primarily trained on large-scale

datasets with minimal task-specific guidance, which can lead to suboptimal performance in

specialized tasks. Visual instruction tuning addresses this limitation by incorporating task-

specific visual cues during the model's training process. This allows the model to better interpret

nuanced visual cues and instructions, improving its accuracy in tasks such as object detection,

image captioning, and semantic segmentation. The authors also explore the potential applications

of VIT in multi-modal AI systems where understanding and generating tasks from both visual

and textual data is crucial. Experimental results show significant performance improvements

when using VIT on several benchmark datasets, demonstrating the efficacy of visual instruction

as a means to bridge the gap between vision and language-based tasks. This research opens new

avenues for developing more flexible and task-aware visual models.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 211

[2] TITLE: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

AUTHORS: R. Girshick, J. Donahue, T. Darrell, and J. Malik

YEAR: 2014

DESCRIPTION: The paper introduces the concept of rich feature hierarchies for the dual tasks

of object detection and semantic segmentation, significantly advancing the state-of-the-art in

both areas. Traditional object detection approaches struggled with low detection accuracy and

the inability to handle complex background clutter. The authors propose a solution through the

integration of multiple levels of convolutional feature hierarchies. By leveraging deep

convolutional networks (CNNs), they enhance the ability of the model to recognize objects at

various scales, which is crucial for real-world applications where objects may appear in different

sizes or orientations. The paper introduces R-CNN, a model that extracts region proposals from

an image and classifies each proposal using CNNs, yielding better detection accuracy.

Additionally, the authors combine CNN-based features with robust object proposal algorithms

like selective search to significantly improve the detection process. The method's success

demonstrated the power of deep learning in the field of object detection and laid the foundation

for further developments such as Fast R-CNN and Faster R-CNN, which optimize and accelerate

the detection process.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 212

[3] TITLE: Fast R-CNN

AUTHORS: R. Girshick

YEAR: 2015

DESCRIPTION: Fast R-CNN is an advanced object detection model designed to improve the

performance and efficiency of the original R-CNN framework. While R-CNN revolutionized

object detection, it had notable limitations, such as its slow processing speed and high

computational cost. Fast R-CNN addresses these limitations by introducing a novel Region of

Interest (RoI) pooling layer that enables faster and more efficient processing of region proposals.

The key idea behind Fast R-CNN is that, instead of performing separate feature extraction for

each region proposal, it extracts features from the entire image in one pass and then applies RoI

pooling to map the relevant portion of the image to a fixed-size feature map. This method

reduces redundant calculations, leading to faster training and inference times. In addition to

increasing speed, Fast R-CNN achieves better accuracy by improving the classification and

bounding box regression steps. As a result, it became a widely adopted approach in computer

vision, significantly enhancing real-time object detection systems. This paper's contributions

were instrumental in pushing forward the development of efficient object detection models.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 213

[4] TITLE: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks

AUTHORS: S. Ren, K. He, R. Girshick, and J. Sun

YEAR: 2017

DESCRIPTION: Faster R-CNN represents a groundbreaking advancement in real-time object

detection by introducing Region Proposal Networks (RPNs), which allow for joint training of the

region proposal generation and object detection processes. Unlike previous models that used

external algorithms like selective search to generate region proposals, Faster R-CNN generates

proposals directly from the feature map of the convolutional layers. This unified approach

eliminates the need for costly external region proposal algorithms, thus reducing computational

overhead and enabling faster processing times. RPNs use a small sliding window to propose

regions of interest, which are then classified and refined by the subsequent layers of the Faster R-

CNN pipeline. The paper shows that this method not only speeds up object detection but also

maintains or even improves accuracy compared to traditional methods. The authors validate their

model on several challenging datasets, demonstrating that Faster R-CNN achieves state-of-the-

art performance in real-time object detection. This paper marks a significant shift towards

integrated, end-to-end learning systems in computer vision, influencing future research in object

detection architectures.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 214

[5] TITLE: You Only Look Once: Unified, Real-Time Object Detection

AUTHORS: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi

YEAR: 2016

DESCRIPTION: YOLO (You Only Look Once) is a revolutionary object detection algorithm

that departs from traditional multi-stage detection systems by framing object detection as a single

regression problem. Unlike earlier models that separately localized objects and classified them,

YOLO performs both tasks simultaneously in a single forward pass through the network. This

unified approach allows YOLO to process images extremely quickly, making it one of the first

real-time object detection models. The authors demonstrate that YOLO achieves impressive

speed without sacrificing accuracy, making it suitable for time-critical applications such as

autonomous vehicles, real-time surveillance, and robotics. YOLO's architecture is based on a

single convolutional network that divides an image into a grid, with each grid cell predicting

bounding boxes and class probabilities. By handling multiple objects in an image at once, YOLO

performs significantly faster than its predecessors, paving the way for real-time applications in

object detection. Despite its speed, YOLO maintains high detection accuracy, especially for large

objects, and its ability to generalize across datasets makes it a versatile model for various

detection tasks.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 215

[6] TITLE: SSD: Single Shot Multibox Detector

AUTHORS:W. Liu et al.

YEAR: 2016

DESCRIPTION: The Single Shot Multibox Detector (SSD) is another key advancement in real-

time object detection, designed to offer a good balance between speed and accuracy. SSD

achieves this by generating multiple bounding box predictions for each object in an image using

feature maps from several layers of a convolutional neural network. The model applies a small

convolutional filter over different layers of the image to detect objects at various scales and

aspect ratios, which is especially beneficial for detecting small and large objects within the same

image. Unlike YOLO, which uses a grid-based approach, SSD predicts bounding boxes for

multiple aspect ratios and scales at each location, enabling it to handle a wider range of object

sizes. SSD also uses a multibox loss function to jointly optimize both classification and

localization, further enhancing its accuracy. This paper demonstrates that SSD not only matches

or exceeds the performance of prior models but also processes images significantly faster,

making it a valuable tool for real-time object detection applications in industries such as

autonomous driving and surveillance.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 216

CHAPTER 3

SYSTEMREQUIREMENTS & SPECIFICATIONS

3.1 EXISTING SYSTEM

In the domain of real-time object detection, the YOLO (You Only Look Once) series has

evolved significantly, with each version addressing limitations and introducing enhancements

to improve accuracy, speed, and versatility. YOLOv5, a widely adopted model, became

notable for its simplicity, modularity, and efficiency in object detection tasks. Despite its

popularity, it faced challenges in balancing real-time performance with detection accuracy,

especially in complex scenarios such as underwater environments. YOLOv5 provided a

baseline for numerous applications but required external optimizations for tasks like instance

segmentation.

Building on this foundation, YOLOv6 introduced structural refinements tailored for

industrial use, focusing on lightweight design and improved processing speed. It incorporated

enhancements like better activation functions and loss calculations, enabling superior

performance for high-speed applications. YOLOv7 further advanced the architecture by

integrating novel techniques such as extended bag-of-freebies and trainable bag-of-specials,

which contributed to achieving state-of-the-art accuracy and efficiency. This model also

introduced additional capabilities for instance segmentation and object tracking, making it

suitable for more dynamic and complex environments.

YOLOv8 represented another leap forward by focusing on panoptic segmentation, key point

estimation, and a more refined feature pyramid network.

3.1.1 EXISTINGSYSTEMDISADVANTAGES
Accuracy-Speed Trade-off: YOLOv5 struggles to balance real-time detection with precision,

especially in complex environments.

Limited Task Versatility: YOLOv5 and YOLOv6 lack native support for advanced tasks like

instance segmentation.

High Computational Overhead: Training and deployment require significant computational

resources, especially in YOLOv6 and YOLOv7.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 217

Sub optimal Performance in Challenging Conditions: Detection falters in environments with

poor lighting, occlusion, or noise, affecting reliability.

Training Complexity: YOLOv7 and YOLOv8 feature advanced architectures that complicate

the training process.

3.2 PROPOSED SYSTEM

YOLOv11 represents a significant leap forward in the field of real-time object detection,

building upon the strengths of its predecessors while addressing many of their limitations. This

model is designed with an optimized architecture that balances the need for high accuracy with

the constraints of real-time processing, making it suitable for a wide range of applications,

including autonomous vehicles, healthcare imaging, security surveillance, and environmental

monitoring. By introducing innovative features like improved feature extraction, dynamic head

design, and enhanced handling of multiple vision tasks, YOLOv11 significantly enhances the

performance and flexibility of the model.

One of the key advantages of YOLOv11 is its ability to process high-resolution images with

minimal computational overhead. It incorporates advanced techniques such as the use of more

efficient convolutional layers, reducing the computational burden without sacrificing detection

accuracy. This makes YOLOv11 ideal for deployment in resource-constrained environments,

including edge devices, drones, and mobile platforms. The model’s architecture also ensures

faster inference times, which is critical for applications requiring real-time feedback and

decision-making, such as traffic monitoring, emergency response, and industrial automation.

Another standout feature of YOLOv11 is its superior adaptability to diverse environments and

tasks. Whether dealing with occlusions, low visibility, or overlapping objects, YOLOv11 excels

in challenging scenarios where other models may struggle. It provides more precise object

localization and segmentation, even in crowded or cluttered scenes.

Furthermore, YOLOv11’s modular design and easy integration with existing pipelines make it

accessible for developers and researchers across various domains. It allows for quick fine-tuning

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 218

and customization, ensuring that it can be adapted to specific tasks without requiring extensive

retraining or complex adjustments. This ease of use, combined with its cutting-edge performance,

positions YOLOv11 as a powerful tool for advancing the field of computer vision.

3.2.1 PROPOSED SYSTEMADVANTAGES
Decision trees are easy to understand and interpret.

Random forests are less sensitive to noise and outliers in the data.

Both decision trees and random forests offer strong advantages in terms of interpretability,

robustness, and handling various types of data.

Random forests can be used for both classification and regression tasks.

3.3 GENERAL
We can see from the results that on each database, the error rates are very low due to the

discriminatory power of features and the regression capabilities of classifiers. Comparing the

highest accuracies (corresponding to the lowest error rates) to those of previous works, our

results are very competitive.

3.4 HARDWAREREQUIREMENTS

The hardware requirements may serve as the basis for a contract for the implementation

of the system and should therefore be a complete and consistent specification of the whole

system. They are used by software engineers as the starting point for the system design. It should

what the system do and not how it should be implemented.

PROCESSOR : DUALCORE 2 DUOS.

RAM : 4GB DD RAM

HARD DISK : 250 GB

3.5 SOFTWAREREQUIREMENTS
The software requirements document is the specification of the system. It should include both a

definition and a specification of requirements. It is a set of what the system should do rather than

how it should do it. The software requirements provide a basis for creating the software

requirements specification. It is useful in estimating cost, planning team activities, performing

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 219

tasks and tracking the teams and tracking the team’s progress throughout the development

activity.

Operating System : Windows 7/8/10

Platform : Spyder3

Programming Language : Python

Front End : Spyder3

3.6 FUNCTIONALREQUIREMENTS
A functional requirement defines a function of a software-system or its component. A function is

described as a set of inputs, the behavior, Firstly, the system is the first that achieves the standard

notion of semantic security for data confidentiality in attribute-based deduplication systems by

resorting to the hybrid cloud architecture.

3.7 NON-FUNCTIONAL REQUIREMENTS

The major non-functional Requirements of the system are as follows
Usability

The system is designed with completely automated process hence there is no or less user

intervention.

Reliability

The system is more reliable because of the qualities that are inherited from the chosen platform

python. The code built by using python is more reliable.

Performance

This system is developing in the high level languages and using the advanced back-end

technologies it will give response to the end user on client system with in very less time.

Supportability

The system is designed to be the cross platform supportable. The system is supported on a wide

range of hardware and any software platform, which is built into the system.

Implementation

The system is implemented in web environment using Jupyter notebook software. The server is

used as the intelligence server and windows 10 professional is used as the platform. Interface the

user interface is based on Jupyter notebook provides server system.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 220

CHAPTER 4

PROJECTDESCRIPTION

4.1 GENERAL
Jellyfish detection using YOLOv11 marks a cutting-edge approach in real-time marine

monitoring, leveraging the advancements in object detection to address the complexities of

underwater environments. The unique characteristics of jellyfish, such as their semi-transparent

bodies, fluid movements, and varying sizes, make them a challenging target for detection

systems. However, YOLOv11’s innovative architecture, designed for both speed and accuracy,

offers a robust solution for identifying jellyfish even under challenging underwater conditions.

YOLOv11 builds on its predecessors by integrating advanced techniques like more efficient

convolutional layers, improved feature extraction, and enhanced multi-task learning capabilities.

These enhancements allow the model to better detect jellyfish, which often appear in cluttered,

noisy environments or in large, overlapping groups. One of the standout features of YOLOv11 is

its ability to achieve accurate detection in real-time without compromising speed, making it ideal

for continuous monitoring in dynamic marine settings.

The model excels at distinguishing jellyfish from their background, which is often composed of

water, sand, or other marine organisms. YOLOv11’s ability to handle transparency and irregular

shapes significantly enhances its ability to detect jellyfish even when they blend into their

environment. This capability is crucial for applications such as real-time jellyfish bloom

detection, where accurate identification is necessary for early warnings to coastal communities or

the fishing industry.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 221

4.2 METHODOLOGIES

4.2.1 MODULES NAME
1. CoordConv Modules

2. Global Average Pooling (GAP)

3. Generative Attention Modules (GAM)

4. Loss Functions

5. Data Augmentation Techniques

6. Post-Processing with Non-Maximum Suppression (NMS)

4.2.2 MODULES EXPLANATION
CoordConv Modules: YOLOv11 replaces conventional convolution layers with CoordConv

(Coordinate Convolution) layers in its backbone. This modification allows the model to better

understand spatial information, which is crucial for detecting transparent or semi-transparent

objects like jellyfish in underwater scenes.

Global Average Pooling (GAP): YOLOv11 uses GAP to aggregate features across the entire

image. This technique improves the model's robustness in handling different object scales and

complex backgrounds, enabling more accurate jellyfish detection across a variety of underwater

environments.

Generative Attention Modules (GAM): These modules help the model learn more focused and

discriminative features, improving its ability to distinguish jellyfish from surrounding noise or

similar marine organisms.

Loss Functions: YOLOv11 introduces new loss functions that improve the localization accuracy

of jellyfish detections. These include both bounding box regression loss and classification loss,

ensuring the model not only detects the jellyfish but also localizes it precisely.

Data Augmentation Techniques: YOLOv11 applies a range of data augmentation strategies,

such as random cropping, scaling, and rotation, to increase the model's robustness to different

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 222

jellyfish appearances and environmental conditions. This helps the model generalize better to

unseen underwater scenes.

Post-Processing with Non-Maximum Suppression (NMS): To refine the detection results and

eliminate redundant bounding boxes, YOLOv11 uses NMS. This technique ensures that only the

most confident detections remain, improving the precision of jellyfish identification in complex

or crowded scenes.

4.3 TECHNIQUEUSED OR ALGORITHMUSED

4.3.1 EXISTING TECHNIQUE

The YOLO series of object detection models, from YOLOv5 to YOLOv8, have significantly

advanced real-time object detection, each iteration introducing improvements in speed, accuracy,

and versatility. YOLOv5, while not officially part of the original YOLO family, is known for its

flexibility and ease of use, becoming popular for real-time detection tasks. However, it faces

challenges in generalization to diverse datasets and struggles with small object detection.

YOLOv6 brought improvements in speed and efficiency, particularly for mobile and embedded

systems, but its trade-off for speed is a slight reduction in detection accuracy, especially for

small or occluded objects. YOLOv7, with its introduction of Efficient Layer Aggregation

Networks (ELAN) and attention mechanisms, enhanced detection capabilities, particularly for

small objects, though it requires more computational resources, making it less suitable for

resource-constrained environments. YOLOv8 pushed performance further by focusing on energy

efficiency and modularity, but its complexity and larger model size can hinder deployment on

devices with limited resources, and its inference speed may be slower than earlier versions.

DRAWBACKS

Optimization Trade-offs:While YOLOv6 is faster and more optimized, it sacrifices some level

of accuracy, particularly when detecting smaller or highly occluded objects.

Transparency and Complex Shapes: Jellyfish detection, for instance, involves transparent and

irregularly shaped objects. All YOLO versions face challenges with transparency and complex,

non-rigid objects, as they rely heavily on pixel-based features that can blend with the background.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 223

Inconsistent Performance Across Datasets: While YOLO versions are highly efficient, their

performance can degrade when applied to diverse and unbalanced datasets without fine-tuning,

especially when detecting rare or atypical object types.

Lack of Robustness to Occlusions: Despite improvements in later versions, occlusions (where

jellyfish overlap or are obscured by other objects) remain a limitation in real-world applications.

4.3.2 PROPOSED TECHNIQUE USEDORALGORITHMUSED
The proposed YOLOv11 model represents a significant advancement in detecting jellyfish,

particularly in underwater environments where detection challenges include transparency,

irregular shapes, and cluttered backgrounds. YOLOv11 builds on the strengths of its

predecessors by integrating cutting-edge techniques such as Enhanced Attention Mechanisms

and CoordCov Modules within its backbone architecture, improving the model’s ability to

detect small and transparent objects like jellyfish. These innovations enable YOLOv11 to capture

finer details and spatial relationships, which is crucial for identifying jellyfish in complex

underwater scenes. Additionally, YOLOv11 leverages Global Attention Mechanisms (GAM),

allowing the model to focus on the most relevant features, significantly enhancing detection

accuracy in real-time scenarios. The model also benefits from an optimized computational

pipeline, making it faster and more efficient in processing underwater imagery with minimal loss

in performance. This makes YOLOv11 highly suitable for deployment in both research and

practical applications such as marine monitoring and conservation efforts, where accurate and

swift detection of jellyfish populations is critical. With its improved detection capabilities and

optimized architecture, YOLOv11 outperforms previous versions like YOLOv5, YOLOv6, and

YOLOv8, especially in terms of handling challenging underwater conditions and ensuring

accurate identification of jellyfish across varying environments.

ADVANTAGES

Enhanced Detection of Small and Transparent Objects: The integration of Enhanced

Attention Mechanisms and CoordCov Modules allows YOLOv11 to better capture intricate

features, making it more effective in detecting small and transparent jellyfish in cluttered

underwater environments.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 224

Global Attention Mechanisms (GAM): This enables YOLOv11 to focus on the most relevant

features in the image, reducing noise and ensuring that jellyfish are accurately detected even in

complex, feature-rich environments.

Improved Accuracy in Cluttered Backgrounds: YOLOv11's ability to focus on key features

enhances its performance in detecting jellyfish among other marine life and debris, making it

particularly useful for underwater scenarios with challenging visibility.

Real-Time Detection: YOLOv11 is optimized for computational efficiency, allowing it to run in

real-time applications without sacrificing detection quality. This is crucial for time-sensitive

marine monitoring and conservation efforts.

Optimized Computational Pipeline: The model’s design ensures faster processing of

underwater imagery, allowing it to be deployed on devices with limited computational resources

without compromising performance.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 225

Data Preprocessing

Feature Engineering

Data Splitting

User

YOLOv11
Dataset

Model Training

Model Evaluation

User Interface

5.1 GENERAL

CHAPTER 5

DESIGNENGINEERING

Design Engineering deals with the various UML [Unified Modelling language] diagrams

for the implementation of project. Design is a meaningful engineering representation of a thing

that is to be built. Software design is a process through which the requirements are translated into

representation of the software. Design is the place where quality is rendered in software

engineering.

5.2 UML DIAGRAMS

5.2.1 USE CASE DIAGRAM

Data Collection

Detection Result

Fig 5.2.1 : Use Case Diagram

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 226

EXPLANATION

The main purpose of a use case diagram is to show what system functions are performed for

which actor. Roles of the actors in the system can be depicted. The above diagram consists of

user as actor. Each will play a certain role to achieve the concept.

5.2.2 CLASS DIAGRAM

Fig 5.2.2: Class Diagram

EXPLANATION

In this class diagram represents how the classes with attributes and methods are linked together

to perform the verification with security. From the above diagram shown the various classes

involved in our project.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 227

Object detection ResultUser Interface

Model TrainingModel Evaluation Data SplitBuilding YOLOv11

Feature EngineeringData PreprocessingData Collection

5.2.3 OBJECT DIAGRAM

Fig 5.2.3: Object Diagram

EXPLANATION

In the above digram tells about the flow of objects between the classes. It is a diagram that shows

a complete or partial view of the structure of a modeled system. In this object diagram represents

how the classes with attributes and methods are linked together to perform the verification with

security.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 228

User

Data Collection

Feature Engineering

Model Evaluation

Detection

Building YOLOv11

Data Preprocessing

5.2.4 STATE DIAGRAM

Fig 5.2.4: State Diagram

EXPLANATION
State diagram is a loosely defined diagram to show workflows of stepwise activities and

actions, with support for choice, iteration and concurrency. State diagrams require that the

system described is composed of a finite number of states; sometimes, this is indeed the case,

while at other times this is a reasonable abstraction. Many forms of state diagrams exist, which

differ slightly and have different semantics.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 229

User

Data Collection

Data Preprocessing

Feature Engineering

Building YOLOv11

Model Evaluation

Detection

5.2.5 ACTIVITY DIAGRAM

Fig: 5.2.5 : Activity Diagram

EXPLANATION

Activity diagrams are graphical representations of workflows of stepwise activities and

actions with support for choice, iteration and concurrency. In the Unified Modelling Language,

activity diagrams can be used to describe the business and operational step-by-step workflows of

components in a system. An activity diagram shows the overall flow of control.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 230

Dataset data

Extracting
Apply

Evaluating the model

Test
passing test data to get a result

using YOLO.pt files

.yam content

.yaml content analysis with number of classes

5.2.6 SEQUENCEDIAGRAM

Data Collection Data Feature Data Split Bulding Model Training Model User Interface Detection
Preprocessing Engineering YOLOv11 Evaluation Result

Fig 5.2.6: Sequence Diagram

EXPLANATION

A sequence diagram in Unified Modelling Language (UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It is a construct of

a Message Sequence Chart. A sequence diagram shows object interactions arranged in time

sequence. It depicts the objects and classes involved in the scenario and the sequence of

messages exchanged between the objects needed to carry out the functionality of the scenario.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 231

9: .yaml content analysis with number of classes

Data
Preprocessing

Data
Collection

2: Extracting Features

8: .yam content1: Dataset data gather

Model
Evaluation

Feature
Engineering

7: using YOLO.pt files

Data
Split

3: Apply Algorithm

5: Test Dataset

Bulding
YOLOv11

Interfa6c: epassing test data to get a result

Detection
Result

4: Evaluating the modelUser

Model
Training

5.2.7 COLLABORATIONDIAGRAM

Fig 5.2.7: Collaboration Diagram

EXPLANATION

A collaboration diagram, also called a communication diagram or interaction diagram, is

an illustration of the relationships and interactions among software objects in the Unified

Modelling Language (UML). The concept is more than a decade old although it has been refined

as modelling paradigms have evolved.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 232

Feature
Engineering

Data Split Building
YOLOv11

User
Inteface

Model
Deployment

Model
Evaluating

Model
Training

Detection
Result

Data
Preprocessing

Data
Collection

5.2.8 COMPONENT DIAGRAM

Fig 5.2.8: Component Diagram

EXPLANATION

In the Unified Modelling Language, a component diagram depicts how components are wired

together to form larger components and or software systems. They are used to illustrate the

structure of arbitrarily complex systems. User gives main query and it converted into sub queries

and sends through data dissemination to data aggregators. Results are to be showed to user by

data aggregators. All boxes are components and arrow indicates dependencies.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 233

Data Gathering

User
Data Analysis

Pre-processing

5.2.9 DATA FLOWDIAGRAM

Level 0

Fig 5.2.9.1: Data Flow Diagrams

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 234

Data Splitting

Yolov11

Model trainwith the train
data

Model accuracy

Detection

Level 1

Fig 5.2.9.2: Data Flow Diagrams

EXPLANATION

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an

information system, modelling its process aspects. Often they are a preliminary step used to create an

overview of the system which can later be elaborated. DFDs can also be used for the visualization of data

processing (structured design).

A DFD shows what kinds of data will be input to and output from the system, where the data will

come from and go to, and where the data will be stored. It does not show information about the timing of

processes, or information about whether processes will operate in sequence or in parallel.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 235

Data
Preprocessing

Building
YOLOv11

Model
Training

Feature
Engineering

Model
Evaluation

User Interface

Prediction
Results

Data Split

Data
Collection

5.2.10 DEPLOYMENTDIAGRAM

Fig: 5.2.10: Deployment Diagram

EXPLANATION

Deployment Diagram is a type of diagram that specifies the physical hardware on which the

software system will execute. It also determines how the software is deployed on the underlying

hardware. It maps software pieces of a system to the device that are going to execute it.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 236

5.2.11 SYSTEMARCHITECTURE

Fig 5.2.11 System Architecture

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 237

CHAPTER 6
DEVELOPMENTTOOLS

6.1 GENERAL

Fig 6.1.1: download python

Fig 6.1.2: Installation of python

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 238

Fig 6.1.3: setup window

Fig 6.1.4: successfully setup python

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 239

Download Install PyCharm

Fig 6.1.5: download pycharm

Fig 6.1.6: pycharm setup

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 240

Fig 6.1.7: Setup window

Fig 6.1.8: Installation pycharm

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 241

Fig 6.1.9: Start menu folder

Fig 6.1.10: setup finish

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 242

PyCharm--Setup

Fig 6.1.11: setup completion

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 243

Fig 6.1.12: creating Directory

Fig 6.1.13: new directory created

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 244

Fig 6.1.14: testing pycharm

Fig 6.1.15: test successful

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 245

Fig 6.1.16: installing Anaconda3

Fig 6.1.17: setup window

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 246

Fig 6.1.18: Installation type

Fig 6.1.19: Installation location

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 247

Fig 6.1.20: Installation options

Fig 6.1.21: Installing

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 248

Fig 6.1.22: Installation completed

Fig 6.1.23: successful installation

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 249

6.2 HISTORY OF PYTHON
The Python programming language was created by Guido van Rossum in the late 1980s at the

Centrum Wiskunde & Informatica (CWI) in the Netherlands. It was developed as a successor to

the ABC language, incorporating features from other languages such as C, Modula-3, and Unix

shell scripting. The name "Python" was inspired by the British comedy series "Monty Python’s

Flying Circus," reflecting van Rossum’s desire to make the language fun and accessible. Python

0.9.0 was officially released on February 20, 1991, and it already included many features that

still define the language today, such as functions, exceptions, modules, and classes with

inheritance.

Python continued to evolve with the release of the Python 1.x series throughout the 1990s,

gaining popularity for its simplicity and readability. In October 2000, Python 2.0 was released,

introducing significant features like list comprehensions, garbage collection, and limited Unicode

support. Python 2.7, released in 2010, became the final version of the 2.x series and remained in

use for many years until official support ended on January 1, 2020.

To address various design limitations and to modernize the language, Python 3.0 was launched in

December 2008. This version was not backward compatible with Python 2, and it introduced

major changes such as the use of the print() function instead of a statement, better Unicode

handling, and the removal of outdated features. Since then, Python 3.x has continued to grow,

with recent versions like Python 3.10, 3.11, and 3.12 introducing enhancements such as

structural pattern matching, improved type hinting, and performance improvements.

6.3 FEATURES OF PYTHON
1. Simple and Easy to Learn

Python has a clear and readable syntax that resembles the English language, making it easy for

beginners to understand and write code quickly.

2. Open Source and Free

Python is open-source, meaning its source code is freely available. Anyone can download,

modify, and distribute it without paying any license fee.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 250

3. Cross-Platform Compatibility

Python is a cross-platform language, which means code written in Python can run on various

operating systems like Windows, Linux, and macOS without modification.

4. Supports Multiple Programming Paradigms

Python supports object-oriented, procedural, and functional programming, providing flexibility

in writing code based on the problem or developer's preference.

5. Extensive Standard Library

Python includes a large standard library with built-in modules and functions for tasks such as file

handling, regular expressions, database access, and internet protocols.

6. Dynamic Typing and Automatic Memory Management

In Python, you don’t need to declare the type of variable. It uses dynamic typing and manages

memory allocation and garbage collection automatically.

7. Rich Third-Party Libraries

Python has a vast ecosystem of third-party libraries like NumPy, Pandas, TensorFlow, Django,

Flask, and more, which support tasks in data science, machine learning, web development, etc.

8. Easy Integration

Python can easily integrate with other languages like C, C++, and Java. This makes it ideal for

extending applications and building complex systems.

9. Strong Community Support

Python has a large and active community that contributes to its development and provides a

wealth of resources like tutorials, forums, and documentation for learning and problem-solving.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 251

CHAPTER 7

IMPLEMENTATION

7. IMPLEMENTATIONAND SNAPSHOTS

Fig 7.1 Anaconda Prompt

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 252

Fig 7.2: Home page

Fig 7.3: Result page

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 253

CHAPTER 8

SOFTWARETESTING

8.1 GENERAL

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, sub-assemblies, assemblies and/or a finished product It is the

process of exercising software with the intent of ensuring that the Software system meets its

requirements and user expectations and does not fail in an unacceptable manner. There are

various types of test. Each test type addresses a specific testing requirement.

8.2 DEVELOPINGMETHODOLOGIES

The test process is initiated by developing a comprehensive plan to test the general

functionality and special features on a variety of platform combinations. Strict quality control

procedures are used. The process verifies that the application meets the requirements specified in

the system requirements document and is bug free. The following are the considerations used to

develop the framework from developing the testing methodologies.

8.3 TYPES OF TESTS

8.3.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program input produce valid outputs. All decision branches and

internal code flow should be validated. It is the testing of individual software units of the

application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs accurately

to the documented specifications and contains clearly defined inputs and expected results.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 254

8.3.2 FUNCTIONAL TEST

Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

8.3.3 SYSTEM TEST

System testing ensures that the entire integrated software system meets requirements. It

tests a configuration to ensure known and predictable results. An example of system testing is the

configuration-oriented system integration test. System testing is based on process descriptions

and flows, emphasizing pre-driven process links and integration points.

8.3.4 PERFORMANCE TEST

The Performance test ensures that the output be produced within the time limits, and the

time taken by the system for compiling, giving response to the users and request being send to

the system for to retrieve the results.

8.3.5 INTEGRATION TESTING

Software integration testing is the incremental integration testing of two or more

integrated software components on a single platform to produce failures caused by interface

defects.

The task of the integration test is to check that components or software applications, e.g.

components in a software system or – one step up – software applications at the company level –

interact without error.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 255

8.3.6 ACCEPTANCE TESTING

User Acceptance Testing is a critical phase of any project and requires significant

participation by the end user. It also ensures that the system meets the functional requirements.

Acceptance testing for Data Synchronization

 The Acknowledgements will be received by the Sender Node after the Packets are

received by the Destination Node

 The Route add operation is done only when there is a Route request in need

 The Status of Nodes information is done automatically in the Cache Updation process

8.2.7 BUILD THE TEST PLAN

Any project can be divided into units that can be further performed for detailed

processing. Then a testing strategy for each of this unit is carried out. Unit testing helps to

identity the possible bugs in the individual component, so the component that has bugs can be

identified and can be rectified from errors.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 256

CHAPTER 9

FUTUREENHANCEMENT

9.1 FUTURE ENHANCEMENTS

Future enhancements for jellyfish detection using YOLOv11 could focus on several key areas to

further improve accuracy, robustness, and deployment efficiency. One potential enhancement

would be the integration of multi-modal data sources, such as combining optical imagery with

sonar or thermal imaging, to improve jellyfish detection in diverse environments, especially in

low-visibility or deep-sea scenarios. Additionally, domain adaptation techniques could be

explored to fine-tune the model for specific marine environments, enabling better generalization

across different oceanic regions and conditions. Another promising direction is the incorporation

of real-time adaptive learning capabilities, where the model can continuously learn from new

data collected during deployment, improving its performance without requiring manual

retraining. Enhancing multi-object tracking would also be valuable, allowing YOLOv11 to not

only detect jellyfish but also track their movement over time, which would aid in studying their

behavior and migration patterns. Finally, reducing model complexity while maintaining high

accuracy could be an important future enhancement to make YOLOv11 more suitable for

deployment on edge devices, such as underwater drones or autonomous marine vehicles,

ensuring scalable and efficient real-time detection in the field. These advancements would

further solidify YOLOv11’s position as a powerful tool for marine research and conservation

efforts. Further advancements of YOLO versions can lead to higher accuracy and precise

detections of an object.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 257

CHAPTER 10

CONCLUSIONANDREFERENCES

10.1 CONCLUSION

In conclusion, this study represents a significant advancement in YOLO versions and while

detecting the objects in any scenarios with precise confidence scores. YOLOv11 represents a

significant leap forward in the detection of jellyfish, particularly in the challenging and dynamic

underwater environment. By integrating advanced techniques like Enhanced Attention

Mechanisms, CoordCov Modules, and Global Attention Mechanisms, YOLOv11 enhances both

the accuracy and efficiency of detecting jellyfish, especially in cluttered and low-visibility

scenarios. Its optimized computational pipeline ensures real-time performance, making it a

viable tool for practical applications in marine research and conservation. While YOLOv11

shows considerable promise, future advancements in multi-modal data integration, adaptive

learning, and multi-object tracking could further enhance its capabilities. As the field of

underwater object detection continues to evolve, YOLOv11 stands poised to play a pivotal role

in the study and monitoring of jellyfish populations, contributing to more effective marine

ecosystem management and conservation strategies.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 258

10.2 REFERENCES

[1] L. Yan, S. Li, and F. Ding, ‘‘The preliminary studies on the dynamics of macro-jellyfish

resources and their relationship with fisheries in the East China Sea and yellow sea,’’ Mar.

Fisheries, vol. 1, pp. 10–14, Aug. 2004.

[2] J. Dong et al., ‘‘The morphology and structure of jellyfish (Cyanea nozakii kishinouye),’’

Fish Sci., vol. 24, no. 2, pp. 22–23, 2005.

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, ‘‘Object detection in 20 years: A survey,’’ Proc.

IEEE, vol. 111, no. 3, pp. 257–276, Mar. 2023.

[4] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N.

Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, ‘‘LLaMA:

Open and efficient foundation language models,’’ 2023, arXiv:2302.13971.

[5] H. Touvron et al., ‘‘Llama 2: Open foundation and fine-tuned chat models,’’ 2023,

arXiv:2307.09288.

[6] I. de Zarzà, J. de Curtò, G. Roig, and C. T. Calafate, ‘‘LLM multimodal traffic accident

forecasting,’’ Sensors, vol. 23, no. 22, p. 9225, Nov. 2023, doi: 10.3390/s23229225.

[7] H. Liu, C. Li, Q. Wu, and Y. J. Lee, ‘‘Visual instruction tuning,’’ 2023, arXiv:2304.08485.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies for accurate

object detection and semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2014, pp. 580–587.

[9] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile,

Dec. 2015, pp. 1440–1448.

[10] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards realtime object detection

with region proposal networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp.

1137–1149, Jun. 2017.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once: Unified, real-

time object detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,

pp. 779–788.

[12] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’ in Proc. 14th Eur. Conf. Amsterdam,

The Netherlands: Springer, Oct. 2016, pp. 21–37.

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 259

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense object

detection,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2999–3007.

[14] B. Alexey, C.-Y. Wang, and H.-Y. Liao, ‘‘YOLOV4: Optimal speed and accuracy of object

detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Apr. 2020, pp. 1–17.

[15] G. Jocher. (2020). YOLOV5. [Online]. Available: https://github.com/ultralytics/yolov5

[16] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B.

Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and X. Wei, ‘‘YOLOV6: A single-stage

object detection framework for industrial applications,’’ 2022, arXiv:2209.02976.

[17] (2023). YOLOV8. [Online]. Available: https://github.com/ultralytics/ultralytics

[18] J. Redmon and A. Farhadi, ‘‘YOLOV3: An incremental improvement,’’ 2018,

arXiv:1804.02767.

[19] M. Martin-Abadal. (2019). Jellyfish Object Detection. Accessed: Mar. 17, 2020. [Online].

Available: https://github.com/srv/ jf_object_detection

[20] T.-N. Pham, V.-H. Nguyen, and J.-H. Huh, ‘‘Integration of improved YOLOV5 for face

mask detector and auto-labeling to generate dataset for fighting against COVID-19,’’ J.

Supercomput., vol. 79, no. 8, pp. 8966–8992, May 2023.

[21] H. Kim, D. Kim, S. Jung, J. Koo, J.-U. Shin, and H. Myung, ‘‘Development of a UAV-type

jellyfish monitoring system using deep learning,’’ in Proc. 12th Int. Conf. Ubiquitous Robots

Ambient Intell. (URAI), Oct. 2015, pp. 495–497.

[22] J. Koo, S. Jung, and H. Myung, ‘‘A jellyfish distribution management system using an

unmanned aerial vehicle and unmanned surface vehicles,’’ IEEE Underwater Technol. (UT), vol.

2017, no. 1, pp. 1–5, Jun. 2017.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learning applied to

document recognition,’’ Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998. VOLUME 12,

2024 87847 T.-N. Pham et al.: Improved YOLOv5 Based Deep Learning System for Jellyfish

Detection

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification with deep

convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2012, pp.

1097–1105.

https://github.com/srv/

Improved YOLO Architecture for Real-Time Jellyfish Detection

Department of CSE(Data Science),GNITC 260

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, ‘‘Going deeper with convolutions,’’ inProc. IEEE Conf. Comput. V is.

Pattern Recognit. (CVPR), Boston, MA,

USA, Jun. 2015, pp. 1–9.

	JAISWAL KASHISH21WJ1A6718 PADIGELA AKSHAYA 21WJ1A
	Dr.Ch. Subbalakshmi HOD - CSE(DATA SCIENCE)
	CHAPTER-1 INTRODUCTION
	1.2SCOPE OF THE PROJECT
	1.3OBJECTIVE
	2.1REVIEW OF RELATED RESEARCH PAPERS

	CHAPTER 3
	3.1EXISTING SYSTEM
	3.1.1EXISTINGSYSTEM DISADVANTAGES
	3.2PROPOSED SYSTEM
	3.2.1PROPOSED SYSTEM ADVANTAGES
	3.3GENERAL
	3.4HARDWARE REQUIREMENTS
	3.5SOFTWARE REQUIREMENTS
	3.6FUNCTIONAL REQUIREMENTS
	3.7NON-FUNCTIONAL REQUIREMENTS
	Usability
	Reliability
	Performance
	Supportability
	Implementation

	CHAPTER 4 PROJECT DESCRIPTION
	4.1GENERAL
	4.2METHODOLOGIES
	4.2.2MODULES EXPLANATION
	4.3TECHNIQUE USED OR ALGORITHM USED
	DRAWBACKS

	4.3.2PROPOSED TECHNIQUE USED OR ALGORITHM USED
	5.1GENERAL
	5.2UML DIAGRAMS
	EXPLANATION
	5.2.2CLASS DIAGRAM
	EXPLANATION
	5.2.3OBJECT DIAGRAM
	EXPLANATION
	5.2.4STATE DIAGRAM
	EXPLANATION
	5.2.5ACTIVITY DIAGRAM
	EXPLANATION
	5.2.6SEQUENCE DIAGRAM
	EXPLANATION
	5.2.7COLLABORATION DIAGRAM
	EXPLANATION
	5.2.8COMPONENT DIAGRAM
	EXPLANATION
	5.2.9DATA FLOW DIAGRAM
	Level 1
	EXPLANATION

	5.2.10DEPLOYMENT DIAGRAM
	EXPLANATION
	5.2.11SYSTEM ARCHITECTURE

	CHAPTER 6
	DEVELOPMENT TOOLS
	Download Install PyCharm
	PyCharm--Setup

	6.2HISTORY OF PYTHON
	6.3FEATURES OF PYTHON
	1.Simple and Easy to Learn
	2.Open Source and Free
	3.Cross-Platform Compatibility
	4.Supports Multiple Programming Paradigms
	5.Extensive Standard Library
	6.Dynamic Typing and Automatic Memory Management
	7.Rich Third-Party Libraries
	8.Easy Integration
	9.Strong Community Support

	CHAPTER 7 IMPLEMENTATION
	7.IMPLEMENTATION AND SNAPSHOTS

	CHAPTER 8 SOFTWARE TESTING
	8.1GENERAL
	8.2DEVELOPING METHODOLOGIES
	8.3TYPES OF TESTS
	8.3.2FUNCTIONAL TEST
	8.3.3SYSTEM TEST
	8.3.4PERFORMANCE TEST
	8.3.5INTEGRATION TESTING
	8.3.6ACCEPTANCE TESTING
	Acceptance testing for Data Synchronization

	8.2.7 BUILD THE TEST PLAN

	CHAPTER 9 FUTURE ENHANCEMENT
	9.1FUTURE ENHANCEMENTS

	CHAPTER 10 CONCLUSION AND REFERENCES
	10.1CONCLUSION
	10.2REFERENCES

